Using G-algebras for Schur index computation
نویسندگان
چکیده
منابع مشابه
Schur algebras
(1.2) Let k be an algebraically closed field of arbitrary characteristic. For a ring A, an A-module means a left A-module, unless otherwise specified. However, an ideal of A means a two-sided ideal, not a left ideal. Amod denotes the category of finitely generated A-modules. For a group G, a G-module means a kG-module, where kG is the group algebra of G over k. If V is a finite dimensional vect...
متن کاملBrauer Algebras, Symplectic Schur Algebras and Schur-weyl Duality
In this paper we prove the Schur-Weyl duality between the symplectic group and the Brauer algebra over an arbitrary infinite field K. We show that the natural homomorphism from the Brauer algebra Bn(−2m) to the endomorphism algebra of the tensor space (K2m)⊗n as a module over the symplectic similitude group GSp2m(K) (or equivalently, as a module over the symplectic group Sp2m(K)) is always surj...
متن کاملSchur Algebras and Schur - Weyl Duality
In this paper we study Schur-Weyl duality between the symplectic group and Brauer’s centralizer algebra over an arbitrary infinite field K. We show that the natural homomorphism from the Brauer’s centralizer algebra Bn(−2m) to the endomorphism algebra of tensor space (K) as a module over the symplectic similitude group GSp2m(K) (or equivalently, as a module over the symplectic group Sp2m(K)) is...
متن کاملGRADED q-SCHUR ALGEBRAS
Generalizing recent work of Brundan and Kleshchev, we introduce grading on Dipper-James’ q-Schur algebra, and prove a graded analogue of the Leclerc and Thibon’s conjecture on the decomposition numbers of the q-Schur algebra.
متن کاملResearch Article Schur Algebras over C -Algebras
Let be a C∗-algebra with identity 1, and let s( ) denote the set of all states on . For p,q,r ∈ [1,∞), denote by r( ) the set of all infinite matrices A= [ajk]j,k=1 over such that the matrix (φ[A[2]]) [r] := [(φ(ajkajk))]j,k=1 defines a bounded linear operator from p to q for all φ∈ s( ). Then r( ) is a Banach algebra with the Schur product operation and norm ‖A‖ = sup{‖(φ[A[2]])‖ : φ∈ s( )}. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2003
ISSN: 0021-8693
DOI: 10.1016/s0021-8693(02)00577-x